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Viscoelastic flow instabilities can arise from gradients in elastic stresses in flows
with curved streamlines. Circular Couette flow displays the prototypical instability
of this type, when the azimuthal Weissenberg number Weθ is O(ε−1/2), where ε
measures the streamline curvature. We consider here the effect of superimposed
steady axial Couette or Poiseuille flow on this instability. For inertialess flow of an
upper-convected Maxwell or Oldroyd-B fluid in the narrow gap limit (ε � 1), the
analysis predicts that the addition of a relatively weak steady axial Couette flow
(axial Weissenberg number Wez = O(1)) can delay the onset of instability until
Weθ is significantly higher than without axial flow. Weakly nonlinear analysis shows
that these bifurcations are subcritical. The numerical results are consistent with a
scaling analysis for Wez � 1, which shows that the critical azimuthal Weissenberg
number for instability increases linearly with Wez . Non-axisymmetric disturbances
are very strongly suppressed, becoming unstable only when ε1/2Weθ = O(We2

z). A
similar, but smaller, stabilizing effect occurs if steady axial Poiseuille flow is added.
In this case, however, the bifurcations are converted from subcritical to supercritical
as Wez increases. The observed stabilization is due to the axial stresses introduced
by the axial flow, which overshadow the destabilizing hoop stress. If only a weak
(Wez . 1) steady axial flow is added, the flow is actually slightly destabilized. The
analysis also elucidates new aspects of the stability problems for plane shear flows,
including the exact structure of the modes in the continuous spectrum, and illustrates
the connection between these problems and the viscoelastic circular Couette flow.

1. Introduction
The stability and nonlinear dynamics of flow in the annular gap between concentric

rotating cylinders has attracted the attention of fluid dynamicists for more than a
century, because of the simplicity of the flow geometry, the rich variety of phenomena
that are observed, and the relevance to technologically and scientifically important
complex flows. For Newtonian flow, the analyses of Rayleigh and Taylor (see Drazin &
Reid 1981) laid the groundwork for the understanding of the so-called Taylor–Couette
instability of simple circular Couette flow. This instability is due to the destabilizing
effect of centripetal acceleration when the inner cylinder rotates faster than the outer,
and occurs when ε1/2Re = O(1), where Re is the Reynolds number and ε the gap
width, non-dimensionalized with cylinder radius. The square of this quantity is known
as the Taylor number, Ta. Note that ε can be thought of as a measure of streamline
curvature, scaled by gap width. The initial instability is a supercritical pitchfork
bifurcation leading to a steady state consisting of axisymmetric toroidal vortices
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superimposed on the Couette flow profile. A very large number of experimental
and theoretical studies have been undertaken to characterize the nonlinear dynamics
and transition to turbulence in this flow (see, e.g. Swinney & Gollub 1985; Chossat
& Iooss 1994). The discovery that the addition of small amounts of polymer to a
Newtonian liquid could significantly reduce drag in turbulent flow led to studies of
the effect of polymer additives on the Taylor–Couette instability. Experiments by a
number of groups indicate that either stabilization (increase in the critical Taylor
number, Tac) or destabilization can occur, depending on the polymer identity and
concentration and the flow geometry (Rubin & Elata 1966; Denn & Roisman 1969;
Giesekus 1971; Sun & Denn 1972). Early theoretical studies of the problem, using
the second-order fluid model, indicate that as the first and second normal stress
coefficients Ψ1 and Ψ2 increase, Tac decreases (Thomas & Walters 1964; Datta 1964;
Ginn & Denn 1969; Sun & Denn 1972). Since for a polymer melt Ψ1 is positive
and Ψ2 negative, addition of polymer has a complex effect. More recent work, using
a true viscoelastic constitutive equation (Oldroyd-B) confirms the conclusion that
a positive first normal stress difference has a destabilizing effect on the classical
(inertially driven) Taylor–Couette instability (Avgousti & Beris 1993b).

In flows of concentrated polymer solutions and melts, Reynolds numbers are
typically small enough for inertially driven instabilities to be absent. The seminal paper
by Larson, Shaqfeh & Muller (1990, hereafter denoted LSM) showed that in circular
Couette flow, instability could occur even at zero Reynolds number, due solely to
viscoelastic effects. Existence of this ‘viscoelastic Taylor–Couette’ (VETC) instability
was demonstrated experimentally and theoretically, and the basic mechanism of
instability was elucidated. Instability occurs when ε1/2Weθ = O(1), where Weθ is
the azimuthal Weissenberg number and ε is as defined above. This scaling reflects
how large Weθ must be for hoop stress perturbations to contribute to the leading-
order perturbation radial momentum balance. The instability mechanism involves
the coupling of stress perturbations to the base-state velocity gradient to generate
a hoop stress, which drives further perturbations. Streamline curvature is essential
for instability, as inertialess viscoelastic plane Couette flow (ε = 0) is stable at
all Weissenberg numbers (Gorodtsov & Leonov 1967; Renardy 1992; Renardy &
Renardy 1986). The analysis of LSM, using the upper-convected Maxwell (UCM) and
Oldroyd-B constitutive models, predicts that, in contrast to the inertial case, VETC
instability occurs as a Hopf bifurcation – a transition from steady to oscillatory
flow. As with the inertial instability, a negative second normal stress coefficient has
been shown theoretically to suppress the purely elastic instability (Beris, Avgousti &
Souvaliotis 1992; Shaqfeh, Muller & Larson 1992).

Fully nonlinear calculations for axisymmetric perturbations (Northey, Armstrong
& Brown 1992; Avgousti, Liu & Beris 1993; Avgousti & Beris 1993b) predict that
(for finite ε) the initial bifurcation is supercritical and leads to a solution with
standing wave structure in the axial direction and an approximate travelling wave
structure in the radial. Linear stability calculations for non-axisymmetric flows by
Sureshkumar, Beris & Avgousti (1994) and Joo & Shaqfeh (1994) predict that non-
axisymmetric perturbations are in fact the most dangerous, for UCM and Oldroyd-B
fluids. The most dangerous azimuthal wavenumber was observed to be typically
between 1 and 3. Through an a posteriori energy analysis, Joo & Shaqfeh (1994)
showed that the detailed mechanism for non-axisymmetric instabilities is different
from that for axisymmetric ones – coupling between base-state hoop stress and non-
axisymmetric radial velocity perturbations drives an increase in perturbation shear
stress, which leads to increased hoop stress through coupling with the base-state
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velocity gradient. Sureshkumar et al. (1994) performed nonlinear simulations of the
non-axisymmetric problem, showing that for sufficiently small gaps, the instability
could be subcritical. When the Reynolds number is non-zero, it is possible for
multiple modes to simultaneously destabilize, at so-called codimension-2 bifurcation
points. Nonlinear analysis near these points is often fruitful, revealing the first effects
of interaction between modes. Renardy et al. (1996) performed weakly nonlinear
analysis near some such points for an upper-convected Maxwell fluid, finding that all
of the bifurcating branches at these points are unstable.

Experiments also exhibit an oscillatory instability (LSM; Muller, Shaqfeh & Larson
1993), apparently subcritical, but a very detailed and sensitive experimental study
(Baumert & Muller 1995) shows an initial instability that is actually a transition to
a weak, axisymmetric, steady flow. No theoretical analysis has yet reproduced this
observation.

Purely elastic instabilities due to streamline curvature have also been observed
in other flows (cf. Shaqfeh 1996). Furthermore, Pakdel & McKinley (1996) have
described a method for generalizing the instability criterion found by LSM to complex
flow geometries such as the lid-driven cavity. The observation of related instabilities
in a variety of situations suggests that elastic instabilities are ubiquitous in complex
shear-dominated viscoelastic flows.

In polymer processing (e.g. adhesive coating) operations, instability is undesirable
as a rule, so it is of practical importance as well as fundamental interest to explore
means of suppressing flow instability. In a number of Newtonian single and multiphase
flow problems, it has been observed that the imposition of relatively small steady or
oscillatory secondary flows may have significant effects on stability. In many examples,
instability may be suppressed to an appreciable degree by a small modification of the
flow. In particular, it has been found both theoretically and experimentally that if the
classical (Newtonian) Taylor–Couette problem is modified by adding a steady axial
pressure-driven flow with axial Reynolds number greater than about 10, the critical
Taylor number is increased substantially (Chandrasekhar 1981). Recent experimental
and computational results (Weisberg, Kevrekidis & Smits 1997; Marques & Lopez
1997) show that an oscillatory shear flow can also significantly stabilize this flow.

The present work is an exploration of axial flow effects on purely elastic VETC
instability. In addition to the general observation that secondary flow may be stabiliz-
ing, this study is motivated by the fact that a negative second normal stress coefficient
suppresses the VETC instability, so that axial flow, which induces a negative second
normal stress difference, might also be expected to lead to stabilization. Furthermore,
there is a paucity of stability results for non-planar viscoelastic flow. After formulating
the linear and weakly nonlinear stability problems in the narrow gap limit, we present
a scaling analysis that predicts that axial flow should lead to significant stabilization.
Numerical linear stability analysis confirms that this is indeed the case once the
axial Weissenberg number is large enough, for both superimposed axial Couette and
Poiseuille flows. Small axial shear rates, however, destabilize the flow. Weakly nonlin-
ear analysis shows that in addition to moving the destabilizing bifurcation point, axial
flow can in some cases change the criticality of the bifurcation. The basic mechanism
of stabilization is elucidated: the axial tension in the fluid due to the axial shear flow
leads to increased resistance of the flow to axial gradients and thus increased stability.
The destabilization mechanism at small Wez is also shown, through an a posteriori
analysis of the terms in the governing equations. Furthermore, the stability problem
and resulting eigenvalue spectrum for pure circular flow are shown to be related to
those for plane Couette and Poiseuille flows, reflecting an underlying unity of the
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various problems. These plane flows are the topic of Appendix A, which contains
a brief overview and some new results regarding their spectra, including an exact
solution for the modes corresponding to the continuous spectrum of plane Couette
flow.

2. Formulation
2.1. Geometry and governing equations

We consider the inertialess flow of an upper-convected Maxwell or Oldroyd-B fluid in
the annular region between infinitely long concentric circular cylinders. The fluid has
relaxation time λ; the polymer and solvent contributions to the viscosity are ηp and
ηs, respectively. The ratio ηs/ηp is denoted by S . In all cases, the inner cylinder, with
radius R1, is rotating with angular velocity Ω. The outer cylinder, with radius R2, is
stationary. The dimensionless constitutive, vorticity and continuity equations are

∂τ

∂t
=

1

S + 1

(
∇v + ∇vT

)
− v · ∇τ + τ · ∇v + (τ · ∇v)T − 1

Weθ
τ , (2.1)

0 = ∇× ∇ · τ +
Weθ S

S + 1
∇× ∇2v, (2.2)

0 = ∇ · v, (2.3)

where v is velocity and τ is the polymer stress tensor. No-slip boundary conditions
are imposed at the two cylinders. The azimuthal Weissenberg number Weθ is

Weθ =
λΩ(1− ε)

ε
,

where

ε =
R2 − R1

R2

.

Note that ε/(1 − ε) measures the maximum streamline curvature. Length is scaled
with the gap width R2 − R1 = εR2, time with ε/((1− ε)Ω), velocity with the speed of
inner cylinder rotation (1− ε)R2Ω and stress with (ηs + ηp)/λ. The dimensionless flow
domain is {(r, θ, z) : (1− ε)/ε < r < 1/ε, 0 < θ 6 2π,−∞ < z < ∞}. For convenience,
a new radial coordinate is defined: ρ = r+ 1− 1/ε, so ρ = 0 is the inner cylinder and
ρ = 1 the outer. We will refer to the pure circular Couette flow limit as CC.

When axial flow is present, another dimensionless group, the axial Weissenberg
number, Wez , is important. If axial Couette flow is imposed, by moving the inner
cylinder axially with dimensional speed V , then

Wez =
λV (1− ε)
R2ε

.

We denote this case by CCAC (Circular Couette with imposed Axial Couette flow). If
axial Poiseuille flow is imposed, by introducing a dimensional axial pressure gradient
Pz , then

Wez =
−PzλεR2

2(ηs + ηp)
.

This definition is based on the wall shear rate, so in both the Couette and Poiseuille
cases Wez measures (to within O(ε)) the maximum shear rate. This case is denoted
by CCAP (Circular Couette with imposed Axial Poiseuille flow). At leading order in
ε, as Weθ → 0 the flow reduces to plane Couette (PC) or plane Poiseuille (PP) flow.
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Our interest is in the evolution of perturbations τ̃ , ṽ of the simple viscometric steady
states nominally exhibited in this geometry. We define a vector of perturbations:
u = (τ̃rr, τ̃rθ, τ̃rz , τ̃θθ, τ̃θz, τ̃zz , ṽr, ṽθ, ṽz), where, for example, τ̃θθ = τθθ − τ̄θθ and τ̄θθ is the
steady value of τθθ . (The steady states for the CCAC and CCAP flows are shown in
Appendix B.) Now (2.1) can be succinctly written

E
∂u

∂t
= Lu+N (u), (2.4)

where Lu is the linearization of the right-hand side of (2.1) about the steady-state
flow and N (u) is the strictly nonlinear term −ṽ · ∇τ̃ + τ̃ · ∇ṽ + (τ̃ · ∇ṽ)T . The matrix
E is diagonal, with ones on the first six diagonals and zeros elsewhere.

Considering the constitutive equations when Weθ � 1 shows that the perturbation
stresses must scale with Weθ in the same way that the steady-state stresses do, for a
balance of terms to be maintained. This fact has an important implication for the
dominant balances in the momentum equations. Consider the θ-component of the
vorticity equation (assuming for the moment axisymmetry and zero solvent viscosity):

∂2τ̃rr

∂r ∂z
+
∂2τ̃rz

∂z2
− ∂2τ̃rz

∂r2
− 1

r

∂τ̃θθ

∂z
− ∂2τ̃zz

∂r ∂z
= 0.

Assuming O(1) gradients, all terms except the fourth are O(1); this term, representing
the contribution of τ̃θθ to the r-momentum balance – the effect of curvature – is
O(εWe2

θ). For this term to remain in the leading-order balance, Weθ must therefore
scale as O(ε−1/2) as ε → 0. If it does not, the problem reduces to one of plane shear
flow, which is always stable. This scaling was first recognized by LSM; we enforce it
by defining a new scaled Weissenberg number Wp = ε1/2Weθ , which is O(1) as ε→ 0.
Correspondingly, the following scalings are enforced: τ̃rr = O(1), τ̃rθ = O(ε−1/2), τ̃rz =
O(1), τ̃θθ = O(ε−1), τ̃θz = O(ε−1/2), τ̃zz = O(1), ṽr = O(ε1/2), ṽθ = O(1), ṽz = O(ε1/2).
Finally, a factor of ε1/2 is absorbed into the time, giving a dimensionless time scaled
on the polymer relaxation time. These scalings were used implicitly in the work of
LSM, and are imposed in the remainder of the present analysis.

In this paper we consider exclusively the leading-order behaviour in the narrow
gap limit ε → 0. In this limit, the steady-state stresses and velocity gradients are
those for plane shear flow. No curvature terms appear in the constitutive equations;
the only effect of curvature is the presence of τ̃θθ in the r-momentum balance when
Wp = O(1).

2.2. Linear stability analysis

For the most part, this work is concerned with the linear stability of the steady-state
flow. Letting u = δu1 + O(δ2), where δ � 1 is the amplitude of the perturbation, the
leading-order problem is just the linear stability problem

E
∂u1

∂t
= Lu1. (2.5)

We consider only axially periodic perturbations, which have the form

u1(ρ, θ, z, t) = ξ(ρ)eiα(z−ct)+inθ + c.c.,

where ξ = (τ̂rr(ρ), τ̂rθ(ρ), τ̂rz(ρ), τ̂θθ(ρ), τ̂θz(ρ), τ̂zz(ρ), v̂r(ρ), v̂θ(ρ), v̂z(ρ)) contains the radial
structure of the perturbation. Here α ∈ R is the axial wavenumber of the perturbations
and n ∈ Z the azimuthal wavenumber. The wave speed is given by c, which is O(1).
Given Wp,Wez, S , α and n, we now have a generalized eigenvalue problem, with
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eigenvalue c. If the imaginary part of c, denoted ci, is positive, the steady state is
unstable. The real part of c is denoted cr and determines the rate of axial propagation
of perturbations, the wave speed.

As mentioned in the introduction, finite-gap calculations of the pure CC problem
predict that non-axisymmetric (n 6= 0) perturbations are generally the most desta-
bilizing. Joo & Shaqfeh (1994) note that, in the pure CC case, when n is O(1),
it does not appear in the leading-order (in ε) stability problem. This also holds
true in the presence of axial flow and in the full nonlinear problem. Therefore, all
modes with n = O(1) have the same bifurcation characteristics at leading order as do
axisymmetric modes. Joo & Shaqfeh included non-axisymmetric effects by keeping
terms of order ε1/2 in their calculations. We construct an equivalent formulation by
considering azimuthal wavenumbers of O(ε−1/2): we let n = ñε−1/2, where ñ = O(1),
and keep leading-order terms. Now the effects of non-axisymmetry can be considered
without the complication of finite-gap effects. With this scaling, the terms from the
upper-convected derivative that contain θ-derivatives are now present, but the terms
from the rate of deformation are absent. The eigenvalue problem is

iαcEξ = Lα,ñ ξ. (2.6)

The operator Lα,ñ is given in Appendix B.
It is also of interest to consider the stability of modes with n = O(ε−1): i.e. modes

that vary azimuthally on the same scale as they vary radially and axially. Modes
with such a fine azimuthal structure have neither been observed experimentally nor
predicted theoretically, and a simple scaling argument reveals why. Taking n = O(ε−1)
and requiring that Weθ be large enough for τ̃θθ to remain in the leading-order radial
momentum balance yields that εWe2

θ = O(ε−1). Therefore, Weθ must be O(ε−1), rather
than O(ε−1/2), for the destabilizing effect of τ̃θθ to play a role. Because of this result,
and corroborating simulations, this case will not be considered further.

In the absence of axial flow, the basic CC flow profile is highly symmetric. Because of
this high degree of symmetry, the perturbation equations are O(2) (i.e. translation and
reflection) invariant in the axial coordinate. In particular, if g(ρ, θ, z, t) is a solution,
then so are both g(ρ, θ,−z, t), and g(ρ, θ, z − z0, t), for any real z0. Hopf bifurcations
that break O(2) symmetry are always degenerate: travelling waves with equal and
opposite wave speeds in the z-direction bifurcate simultaneously, and only a nonlinear
analysis can determine whether the actual bifurcating solution is a travelling wave
or a standing wave (equal superposition of the two travelling waves) (Golubitsky,
Schaeffer & Stewart 1985). Avgousti & Beris (1993b) provide a detailed discussion of
symmetry issues in the context of axisymmetric instabilities of CC flow. If axial flow
is imposed, the reflection symmetry is lost (the O(2) symmetry is broken to SO(2)),
the Hopf bifurcation is no longer degenerate, and the linear analysis determines the
form of the bifurcating solution. Hopf bifurcations in SO(2) symmetric systems, i.e.
when Wez 6= 0, take the form of non-degenerate travelling waves (Iooss & Joseph
1990).

2.3. Numerical analysis of the linear stability problem

The differential eigenvalue problem described above and detailed in Appendix B is
discretized with a Chebyshev collocation technique (Canuto et al. 1988) using N + 1
collocation points. The number of points used for a particular calculation is indicated
in the figure caption for that calculation. We typically use N = 64; N = 32 suffices
for calculations at Wez = 0, but N = 128 is required for calculations at large Wez
and small Wp. Continuity is used to eliminate v̂z . The boundary conditions on v̂r are
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imposed by substituting them for the θ-vorticity equation at the boundary collocation
points and the first point in from either boundary. This is standard when more
than one boundary condition must be satisfied at a boundary (Canuto et al. 1988).
Similarly, the boundary condition on v̂θ is imposed by substituting it for the r-vorticity
equation at each boundary. The resulting algebraic generalized eigenvalue problem is
solved with a public-domain subroutine that uses QZ factorization (Garbow 1978).
Since E is singular, there are many ‘infinite’ eigenvalues, which numerically have
moduli greater than 108. These are discarded.

The presence of spurious eigenvalues is well-documented in the stability analysis
for PP and PC flows (Ho & Denn 1977; Renardy & Renardy 1986; Keiller 1992), so
we expect that such eigenvalues might arise in the present analysis when Wez 6= 0.
These eigenvalues are grid dependent and may lead to artificial instabilities. In the
formulation used here, where pressure is eliminated by using the vorticity equation,
four spurious eigenvalues appear in the axisymmetric problem; in the Poiseuille case
all have real parts less than zero and in the Couette case two eigenvalues have
negative real parts and the others have real parts greater than the axial velocity
of the inner cylinder. Thus, in both cases, the spurious eigenvalues correspond to
wave speeds outside the range of fluid velocities of the steady-state motion. Ho
& Denn (1977) and Renardy & Renardy (1986) using similar formulations for
the pure PP and PC problems, observe similar results. In the primitive variable
formulation used by Sureshkumar & Beris (1995b), spurious modes of this type are
absent, so their origin apparently lies in our treatment of pressure. In fact, after
the completion of the computations shown in this paper, the present author, in
collaboration with V. V. Ramanan, found that a primitive variable formulation with
a staggered collocation point grid for pressure displays no spurious modes, consistent
with the results of Sureshkumar & Beris (1995b). Nevertheless, with the present
formulation, the spurious modes can be eliminated from the axisymmetric problem
by simply imposing (numerical) Neumann boundary conditions on some of the stresses
(i.e. by replacing the equation for the stress at the boundary collocation points with the
discretized Neumann condition). This ‘boundary regularization’, applied just to τ̂rr, τ̂rz
and τ̂zz , removes the spurious eigenvalues, leaving the true eigenvalues essentially
unchanged. This has been checked with pure PC flow, where the spectrum is known
exactly, as well as with randomly chosen CC runs, with and without axial flow. Figure
16 shows a calculation of the PC spectrum with and without boundary regularization.
For the non-axisymmetric problem, spurious modes are still present (in the pressure-
free formulation) after boundary regularization, but remained sufficiently stable that
they only became important at Wp values far above the minimum critical value for
instability.

Even after elimination of these spurious modes, artificial instability can occur if
both Wp and Wez are non-zero. This instability arises because some of the poorly
resolved components of the continuous spectrum (see Appendix A) cross the real axis.
(This never occurs if Wp = 0.) This problem can be alleviated by regularizing the
constitutive equation with a diffusive term Ds∇2τ (cf. Sureshkumar & Beris 1995a).
However, this regularization does influence the true eigenvalues (unlike the boundary
regularization), so for all results presented here, only boundary regularization was
imposed, and results were checked to verify that no artificial instability was present.

The codes used here were validated by comparisons with several sources. Pure
CC flow was checked with results of LSM, as well as an asymptotic lower bound
derived below. The PC flow limit was checked against the exact analytical results of
Gorodtsov & Leonov (1967), and the PP limit was checked against the Chebyshev
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collocation results of Sureshkumar & Beris (1995b) and by checking the approach of
the boundary-localized modes to the Gorodtsov–Leonov modes at large α.

2.4. Nonlinear analysis

Once a bifurcation point Wpc has been detected via linear stability analysis for given
Wez, S , α, and ñ, we determine the criticality of the bifurcation through a weakly
nonlinear analysis. All bifurcations considered here are Hopf bifurcations, and we
use the perturbation method detailed by Iooss & Joseph (1990) to explicitly construct
time-periodic solutions, with amplitude δ and frequency ω, near the bifurcation
point. Only solutions with spatial period 2π/α will be considered here, so sideband
instabilities are not addressed. Because it will be seen that for Wez & 1 axisymmetric
modes are most dangerous, our nonlinear analysis will be restricted to this case.
Letting µ = Wp −Wpc, ω0 = −αcr , where cr is the wave speed at Wpc, and s = ωt,
we seek a solution of the form(

u(z, s, δ)
µ(δ)

ω(δ)− ω0

)
=

∞∑
k=1

δk

k!

(
uk(z, s)
µk
ωk

)
, (2.7)

where u is taken to contain the solution values at the Chebyshev collocation points,
and is periodic in z with period 2π/α and in s with period 2π. It can be shown that
µk = ωk = 0 for odd values of k. The goal of the present analysis is to determine
µ2, whose sign determines the criticality of the bifurcations: neglecting terms beyond
O(δ3),

δ =

(
2(Wp−Wpc)

µ2

)1/2

. (2.8)

If µ2 > 0 , the bifurcation is supercritical – a finite-amplitude solution exists when
Wp > Wpc. A negative value of µ2 indicates subcritical bifurcation.

The original nonlinear problem (2.4) can be rewritten

ωE
du

ds
= L(µ)u+N (u). (2.9)

The gradient operators in the nonlinear term take on their Cartesian representations
in the narrow gap limit. The time-periodic solution is constructed order by order in
δ and a solvability condition at third order gives expressions for µ2 and ω2. We will
use the inner products

〈a(z, s), b(z, s)〉 ≡ α

4π2

∫ 2π/α

0

∫ 2π

0

a(z, s)b̄(z, s) ds dz

and

[a(z, s), b(z, s)] ≡
9(N+1)−1∑

l=0

〈al(z, s), bl(z, s)〉.

For the moment, the overbar denotes a complex conjugate. Also, 〈a(z, s), b(z, s)〉 is the
vector whose lth component 〈a(z, s), b(z, s)〉l is given by 〈al(z, s), bl(z, s)〉.

Applying the expansion (2.7), and considering the problem at O(δ1), gives the linear
stability problem, which we rewrite(

−ω0E
d

ds
+ L(0)

)
u1 ≡ J0u1 = 0. (2.10)
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This problem has a non-trivial real travelling wave solution u1 = z+ z̄, where z = eisζ
and ζ = eiαzξ. The vector z∗ is the solution to the adjoint problem J∗0z

∗ = 0. Now
we let Aα = −iω0E + Lα, where Lα is L(0) with ∂/∂z replaced by iα. Its components
are given in Appendix B. Equation (2.10) becomes Aαξ = 0, with adjoint problem
A∗αξ

∗ = 0. Given Wpc and cr , ξ and ξ∗ are simply the right and left eigenvectors of
Aα, which we normalize so that [ζ, ζ∗] = 1. Now we define the amplitude δ of the
solution to be

δ = [u, z∗],

and require that

[u1, z
∗]− 1 = [uk, z

∗] = 0, k > 2. (2.11)

It can be shown in general that ω1 = µ1 = 0, so the problem at O(δ2) is

J0u2 = −2N 2(u), (2.12)

where N k(u) is the O(δk) part of N (u). The particular solution has the form

u2 = u20 + u22e
2i(αz+s) + ū22e

−2i(αz+s), (2.13)

where u20 and u22 satisfy

L0u20 = −2〈N 2(u), 1〉 (2.14)

and

(−2iω0E + L2α) u22 = −2〈N 2(u), 1e2i(αz+s)〉. (2.15)

Here 1 = (1, 1, 1, . . .). The first of these two equations is singular even in the exact
case (i.e. without discretization). The singularity can be traced to the elimination of
pressure and the null vector corresponds to simple axial Poiseuille flow. The null
vector is excluded from the final solution because it corresponds to a pressure field
that is not spatially periodic. Therefore, we take u20 to be the minimum norm solution
to (2.14), which we determine by singular value decomposition. Equation (2.15) is not
singular and its solution is found by LU decomposition.

At third order, the orthogonality requirement (2.11) leads to a solvability condition,
whose real and imaginary parts require that

µ2 = −2

(
dαci
dµ

)−1

Re

{
[N 3(u), z

∗]

[Eu1, z∗]

}
, (2.16)

ω2 = −2αµ2

dcr
dµ

+ 2 Im

{
[N 3(u), z

∗]

[Eu1, z∗]

}
. (2.17)

The derivatives in these expressions are evaluated at µ = 0. Given the solutions u1

and u2, these formulas can be evaluated to determine the criticality of the bifurcation,
from the sign of µ2, as well as whether the oscillation frequency increases (ω2 > 0) or
decreases with amplitude.

3. Results and discussion
3.1. Instability in the absence of axial flow

To provide a basis for the main results of this work, we begin by reviewing the pure
‘viscoelastic Taylor–Couette’ instability, i.e. the instability in the CC case, focusing
on axisymmetric disturbances of the upper-convected Maxwell fluid. For the most
part, the results reproduce those obtained by LSM. Effects of solvent viscosity and
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non-axisymmetric perturbations will be discussed in the context of the CCAC and
CCAP flows.

In general, the linear stability problem must be solved numerically, as detailed above.
Nevertheless, an illustrative asymptotic result can be found for short-wavelength
axisymmetric disturbances. LSM showed that when α � 1, Wp must be O(α1/2) for
τ̂θθ to remain in the leading-order r-momentum balance. The linearized equations
governing disturbances can be reduced to a single fourth-order boundary value
problem for the radial velocity v̂r (LSM). Letting S = 0, ñ = 0, R = ρα,Wp =
O(α1/2), v̂θ = O(Wp), c = O(α−3/2), this equation is

v̂′′′′R − 2v̂′′R + Λv̂′R + v̂R = 0, (3.1)

with boundary conditions

v̂R(0) = v̂′R(0) = v̂R(α) = v̂′R(α) = 0,

where

Λ =
2Wp2

α(i + αcWp)2
= O(1).

Here v̂R is the radial velocity expressed in the scaled variable R and primes denote
derivatives with respect to R. By expressing solutions as exp(σR), a quartic equation in
σ is found. If Λ is not purely imaginary, there are no non-trivial solutions that satisfy
the boundary conditions (LSM). LSM found an approximate numerical solution,
moving the boundary conditions at R = α to R = ∞, finding that instability occurs
at Wpc ≈ 1.960α1/2. Numerical results of LSM and the present work, for the problem
with the exact boundary condition, indicate that this formula consistently overpredicts
Wpc. Further analysis is able to provide a more precise approximation. Examination
of the roots of the quartic for imaginary Λ shows that an eigenfunction that remains
bounded as α→∞ can only exist if |Λ| > 3.0795. Using the definition of Λ and setting
ci = 0, we find that as α→∞, the neutral curve when Wez = 0 is bounded from below
by the curve Wp = 1.755α1/2. This lower bound agrees very closely with the numerical
results presented below. The corresponding eigenfunction is a superposition of two
sinusoidal functions with different wavenumbers, which at Λ = i3.0795 are 0.584α
and 0.571α. Thus, in the limit α → ∞, the exact disturbance structure is a sum of
two radially travelling waves, consistent with the numerical observations at finite α.
At any finite wavenumber, there will be a slight deviation from purely sinusoidal
behaviour in boundary layers of thickness α−1 at each wall.

The numerically determined neutral curve for S = 0, ñ = 0,Wez = 0 is shown
in figure 1. The minimum occurs at Wpc,min = 5.93, α = 6.7. These results are in
agreement with the calculations of LSM. This figure also shows the asymptotic lower
bound, Wp = 1.755α1/2, derived above. Figure 2 shows the spectrum of eigenvalues
at Wp = Wpc,min = 5.93, α = αmin = 6.7 (cf. Shaqfeh et al. 1992). Note the pair of
eigenvalues with zero imaginary part, but with opposite real part, corresponding to
waves travelling in opposite directions. Nonlinear analyses for finite gaps (Northey
et al. 1992; Avgousti et al. 1993; Avgousti & Beris 1993b) have shown that the
two travelling waves have equal amplitude, so the result is a standing wave in
the axial direction. A snapshot of the destabilizing disturbance, assuming standing
wave structure, is shown in figure 3. Fluctuations travel radially, consistent with the
asymptotic analysis at high wavenumber.
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Figure 1. Neutral curve for axisymmetric CC flow. Solid curve: numerical result, S = 0, N = 32.
Dashed curve: lower bound determined from asymptotic analysis at large α.
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Figure 2. Spectrum of CC flow, Wp = 5.93, α = 6.7, ñ = 0, N = 64.

Outer cylinder
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Figure 3. Snapshot of an azimuthal cross-section of the structure of τ̃θθ , the θθ-component of the
destabilizing disturbance stress at Wez = 0, Wp = 5.93, α = 6.7, ñ = 0, N = 64. The disturbance is
an equal superposition of the eigenfunctions corresponding to the eigenvalues on the real axis on
figure 2. Black indicates negative deviation from the steady-state value, white positive. Fluctuations
travel radially, but not axially in this case.
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3.2. Effect of axial shear flow

3.2.1. Scaling results for Wez � 1

Axial flow introduces new stresses into the problem, which potentially change the
dominant balances in the momentum equations. To begin the examination of the
effect of axial flow, we consider the scaling behaviour when Wez � 1 in the CCAC
case, where the base-state stresses are uniform across the gap. The primary question
we address is: how large must Wp be for τ̂θθ to enter into the leading-order radial
momentum balance?

We first examine the case Wez � 1, α = O(1), ñ = 0 and assume that Wp scales as
Wemz , where m is as yet unknown. The value of S has no effect on the scalings. Be-
ginning with the rr-component of the linearized constitutive equation, and absorbing
a factor of Wp into the velocities (including c), it is found that a balance between all
terms in the equation is maintained if c = O(1), τ̂rr = O(Wez) and if 1−ρ = O(We−1

z ).
Evidently, there is a boundary layer of thickness We−1

z near the outer cylinder.
(Consideration of wave speeds of O(Wez), reveals a boundary layer scale near the
inner cylinder.) The scalings for the other stresses within this boundary layer can be
obtained similarly: τ̂rθ = O(We1+m

z ), τ̂rz = O(We2
z), τ̂θθ = O(We1+2m

z ), τ̂θz = O(We2+m
z ),

τ̂zz = O(We3
z). The existence of a boundary layer and the stress scalings are consistent

with the analysis of Renardy (1997). All of the terms that couple base-state and
disturbance quantities remain in the dominant balance for the constitutive equations.
In the θ-vorticity equation, the dominant terms are −τ̂′′rz and iατ′zz , which scale as
We4

z in the boundary layer. For τ̂θθ, scaling as We1+2m
z , to remain in the dominant

balance, m must equal 3/2. Thus, at fixed α, axisymmetric disturbances are not ex-

pected to be destabilizing until Wp = O(We3/2
z ). Axial flow provides very significant

stabilization.

Similar analyses can be performed in a variety of relevant cases. For axisymmetric
modes, three scaling regimes are found, depending on α:

αWez � 1 : Wp = O(α1/2We3/2
z ), (3.2)

Wez � 1, αWez = O(1) : Wp = O(Wez), (3.3)

Wez � 1, αWez � 1 : Wp = O(α−1). (3.4)

Boundary layers do not arise in the latter two cases. These results suggest that the
minimum Wp for instability, Wpc,min, and the wavelength (2π/αmin), should increase
linearly with Wez . The numerical results presented below are in good agreement with
the scaling predictions, even for Wez as small as about unity. For non-axisymmetric
perturbations (ñ = O(1)), with for example α = O(1), the dominant balance in the
θ-vorticity equation is between τ̂′θz and τ̂′zz , which are now O(We2m+2

z ), yielding m = 2.
The three regimes present for axisymmetric modes are absent here; m = 2 is the
weakest scaling found. Thus non-axisymmetric disturbances are even more strongly
suppressed than axisymmetric ones, a result also confirmed by the numerical results.
Furthermore, as ñ → ∞, no power-law dependence of Wp on Wez can keep τ̂θθ in
the dominant balance, consistent with the result found above that when n = O(ε−1),
Weθ must be O(ε−1) for instability. In summary, the scaling analysis predicts that
for CCAC flow, Wpc = O(Wez), with axisymmetric modes being most dangerous.
Since the actual azimuthal Weissenberg number Weθ is O(ε−1/2), these results suggest
that an axial Weissenberg number much smaller than the azimuthal one can have a
significant effect on the stability of the flow.
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Figure 4. Neutral curve for CCAC flow, S = 0, ñ = 0, N = 64, at a number of values of Wez .
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Figure 5. Dependence of Wpc,min and αmin on Wez in axisymmetric CCAC flow.

3.2.2. Effect of axial Couette flow: linear analysis

Figure 4 shows numerically determined axisymmetric neutral curves for the CCAC
case with S = 0, at a number of values of Wez . Although Wpc decreases for small Wez ,
once Wez & 1, Wpc,min is greater than when Wez = 0. At constant α, the values for Wpc
closely follow the scaling prediction Wpc = O(We3/2

z ). The dependence of Wpc,min on
Wez is shown in figure 5; after an initial decrease, Wpc,min increases linearly with Wez ,
with a slope of about 3.2. Figure 5 also shows that αmin decreases monotonically with
increasing Wez . In fact, when Wez & 1, αWez ≈ 4.7 at criticality, independently of Wez ,
in close agreement with the scalings described above for the regime αWez = O(1).
The corresponding curves for S = 10 are also shown on figure 5; the results are
qualitatively identical. Since neither numerical results nor scaling analysis show any
qualitative dependence on S , only results for S = 0 will be presented in the remainder
of the paper.
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Figure 6. Dependence of Wpc on azimuthal wavenumber ñ in CCAC flow; α = 6.7, S = 0, N = 64.

Figure 7. Snapshot of an azimuthal cross-section of τ̃θθ at Wp = 13.95, α = 1.1, ñ = 0,
Wez = 4, N = 64, CCAC flow. The disturbance travels without distortion to the right with
speed c = 3.37× 10−2.

The scaling results suggest that non-axisymmetric disturbances are strongly sup-
pressed by axial flow. Figure 6 shows results of the numerical computation of Wpc as
a function of ñ for α = 6.7, S = 0. When Wez = 0, the minimum in this slice of the
neutral surface appears near ñ = 0.5, showing that, in the narrow gap limit, CC flow is
most unstable with respect to non-axisymmetric disturbances. This result is consistent
with finite-gap calculations of Avgousti & Beris (1993a) and Joo & Shaqfeh (1994).
As Wez increases, however, non-axisymmetric disturbances are strongly suppressed;
at Wez = 0.5 axisymmetric disturbances are already the most dangerous. Results
for Wpc at fixed ñ are in good agreement with the predicted We2

z dependence, and
furthermore, as ñ increases, the neutral curves turn sharply upward. Reliable compu-
tations at N = 64 were not possible above the endpoints of the curves shown, because
Wpc rapidly became so large that spurious instabilities occurred before real ones.
These results are consistent with a scaling argument that shows that when ñ� 1, no
power-law dependence of Wp on Wez can bring τ̂θθ into the leading-order momentum
balance.

Figure 7 shows τ̃θθ for a typical disturbance structure at instability. Parameter
values are Wez = 4, α = 1.1,Wp = 13.95, S = 0, ñ = 0; this is at the minimum of the
axisymmetric neutral curve for Wez = 4. The disturbance is a travelling wave in the
axial direction; stress fluctuations are localized near the outer cylinder, in contrast
to the CC case, where they have uniform amplitude throughout the domain. This
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Figure 8. Evolution of the spectrum of CCAC flow as Wez increases, for Wp = 93,
α = 6.7, ñ = 0, N = 64.

localization is consistent with the scaling analysis, which predicts stress boundary
layers when α = O(1). At these conditions the velocity field is not localized.

The CCAC flow is a hybrid between pure azimuthal shear flow and pure axial shear
flow. Insight into the relationship between the stability problems in these limiting cases
can be gained by looking at the spectra of CCAC flow as parameters change. Because
of the scaling and numerical results, and the existence of a version of Squire’s theorem
for axial shear flow in the limit ε → 0 (Tlapa & Bernstein 1970), only axisymmetric
disturbances need be considered. Figure 8 shows how the spectrum evolves when
Wp = 5.93, α = 6.7, S = 0, ñ = 0 as Wez increases from zero. The initial effect of axial
Couette flow on the most unstable modes is to move the leftmost one upward and to
the right, and the rightmost one downward and to the right, as shown by the arrows.
Notice that at Wez = 0.25, for example, the leftmost eigenvalue is unstable, but has
negative real part. Thus the destabilizing disturbance in this case travels upstream,
in the direction opposite to the imposed axial flow. At higher Wez , the real part of
the wave speed for this mode becomes positive (the disturbance travels downstream)
and the imaginary part decreases below zero, resulting in stability. Its path is shown
by the dotted curve. Numerically, the continuous spectrum is approximated by a
ring of discrete eigenvalues (see the discussion in Appendix A); the figure shows
the evolution of this as Wez increases. Now consider the evolution of the spectrum
with Wez = 2, α = 6.7, S = 0, ñ = 0, as Wp decreases, as shown in figure 9. In this
case the spectra are scaled by Wp/Wez , so that the continuous spectrum has real
parts spanning [0, 1]. As Wp decreases, the destabilizing eigenvalue moves downward,
as again shown by the dotted curve, evolving into the leftmost Gorodtsov–Leonov
eigenvalue of plane Couette flow as Wp → 0 (see Figure 16). So although the
Gorodtsov–Leonov eigenvalues do not lead to instability in plane shear flow, one of
them is the source of instability in the hybrid CCAC flow and ultimately in pure CC
flow.
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Figure 10. Neutral curve for CCAP flow, S = 0, ñ = 0, N = 64, at a number of values of Wez .

3.2.3. Effect of axial Poiseuille flow: linear analysis

Figure 10 shows neutral curves for the CCAP case with S = 0, ñ = 0 at various
Wez . Figure 11 shows the dependence of Wpc,min on Wez . Results for S 6= 0 are
qualitatively identical. In some of the neutral curves, there are noticeable kinks (and
a corresponding jump in αmin); in contrast to the CCAC case, the identity of the most
unstable eigenvalue changes with α and Wez (see below). As in the CCAC case, the
flow is stabilized once Wez is sufficiently large, but the effect is not nearly as dramatic
as it is in the CCAC case.

The behaviour of non-axisymmetric disturbances to CCAP flow is similar to that
in the CCAC case. Figure 12 shows the dependence of Wpc on ñ when S = 0, α = 6.7.
Above Wez = 1, axisymmetric modes are the most unstable, although here the neutral
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Figure 12. Dependence of Wpc on azimuthal wavenumber ñ in CCAP flow; α = 6.7, S = 0, N = 64.

surface initially appears flat on the scale chosen for the figure. The kinks in the curve
show where the most dangerous mode changes identity, and as in the CCAC case,
the curves turn up sharply, becoming difficult to compute, as ñ increases.

As in the CCAC case, the destabilizing disturbances in CCAP flow are travelling
waves. However, their radial structure differs significantly. Figure 13 shows τ̃θθ at
Wez = 4, α = 8.2, ñ = 0,Wp = 7.419; this is at the minimum of the axisymmetric
neutral curve for Wez = 4. The fluctuations are again localized, but now in the centre
of the annular domain, and they travel with a speed very near the fluid axial velocity
at the centreline. Near the centreline the axial shear rate and corresponding stresses
are virtually zero, so the dominant balance here remains that of the pure CC problem,
while closer to the walls the axial stresses overwhelm the effect of τ̂θθ. An asymptotic
analysis for high α, assuming the existence of an internal layer of thickness 1/α
centred at ρ = 1/2, yields a leading-order inner problem that is independent of Wez .
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Figure 13. Azimuthal cross-section of the structure of τ̃θθ at Wp = 7.419, α = 8.2, ñ = 0, Wez = 4,
N = 64, CCAP flow. The disturbance travels without distortion to the right with speed c = 0.144,
slightly faster than the steady-state centreline axial velocity of 1/Wp = 0.135.
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Figure 14. Evolution of the spectrum of CCAP flow as Wez increases, for Wp = 5.93, α = 6.7,
ñ = 0, N = 64.

This result is consistent with the numerical neutral curves, which nearly collapse to a
single curve at high α and O(1) Wez .

The internal layer structure of the most unstable disturbance at O(1) Wez rules
out identification of this mode with one of the Gorodtsov–Leonov modes, which are
boundary layer modes. However, in plane Poiseuille (PP) flow another pair of discrete
modes exists, which are shown in Appendix A to have an internal layer structure. We
now examine the spectra as parameters change, to better understand the relationship
between CCAP flow and pure PP flow. Figure 14 shows the evolution of the spectrum
for Wp = 5.93, α = 6.7, ñ = 0 as Wez varies. Both dominant eigenvalues of the pure
CC flow are initially destabilized; initially the leftmost is most unstable, but the
rightmost one becomes the most unstable once Wez & 1. Its evolution is tracked by
the dotted curve. This change also explains the kink in the neutral curves at fixed Wez
as α increases. Figure 15 shows how the spectrum changes as Wp is decreased with
Wez = 2, α = 6.7; the destabilizing eigenvalue (dotted curve) relaxes to an internal
layer mode of PP flow, mode (c) of figure 18, as Wp → 0. So, as in the CCAC case,
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the destabilizing mode is related to a mode of a pure plane shear flow, but in this
case an internal layer mode of PP flow rather than a Gorodtsov–Leonov mode.

3.3. Nonlinear analysis

In addition to the effect of axial flow on the position of bifurcation points, it is
of interest to determine its effect on their criticality. In particular, if the goal of
applying a secondary flow is to suppress instability, it is desirable to not only move
the bifurcation point upward, but also to make it supercritical. Otherwise, instability
to finite-amplitude disturbances can occur below the bifurcation point, leading to
flows that are far from the desired state. With the approach described above, we have
determined the criticality of bifurcations of both CCAC and CCAP flow at Wpc,min
and αmin when S = 0, ñ = 0. The results are shown in table 1.

At Wez = 0, µ2 < 0, so from (2.8), the bifurcation to travelling waves is predicted
to be subcritical: no stable non-trivial solution exists near the bifurcation point
(Golubitsky et al. 1985; Sureshkumar et al. 1994). Simulations for finite gaps predict
supercritical bifurcation (Northey et al. 1992; Avgousti et al. 1993; Avgousti &
Beris 1993b). However, results from Sureshkumar et al. (1994) show that as the gap
becomes smaller, bifurcations of non-axisymmetric states switch from supercritical
to subcritical. Given the fact that axisymmetric and non-axisymmetric modes with
n = O(1) must behave identically as ε→ 0 and that non-axisymmetric modes become
subcritical as ε decreases, our prediction of subcriticality does not appear to be in
conflict with existing results.

When Wez 6= 0, the CCAC and CCAP results differ qualitatively. For CCAC flow,
µ2 < 0 for all of the values of Wez studied. In contrast, in CCAP flow, µ2 changes
from negative to positive as Wez increases; the discontinuity in µ2 between Wez = 2
and Wez = 3 reflects the change in identity of the most dangerous mode as Wez
increases. Axial Poiseuille flow both increases Wpc and changes the bifurcation from
subcritical to supercritical.
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Wez Wpc,min αmin µ2 ω2

(a) 0 5.93 6.7 −0.306 1.56× 10−3

1 4.94 3.2 −0.246 −6.90× 10−3

2 7.70 2.0 −0.152 −3.31× 10−3

3 10.79 1.4 −9.99× 10−2 −1.35× 10−3

4 13.95 1.1 −6.60× 10−2 −6.02× 10−4

5 17.18 0.9 −4.85× 10−2 −3.18× 10−4

10 33.63 0.47 −1.91× 10−2 −4.54× 10−5

Wez Wpc,min αmin µ2 ω2

(b) 0 5.93 6.7 −0.306 1.56× 10−3

1 5.07 6.2 −1.52× 10−2 −5.83× 10−3

2 5.55 6.8 0.210 6.60× 10−3

3 6.45 6.6 0.122 4.72× 10−3

4 7.42 8.2 0.138 1.22× 10−2

Table 1. Results of linear and weakly nonlinear analysis for (a) CCAC and (b) CCAP flows,
S = 0, ñ = 0, N = 64.

3.4. Mechanisms of stabilization and destabilization

For axisymmetric disturbances to pure CC flow, the basic instability mechanism was
elucidated by LSM and further illustrated using energy arguments by Joo & Shaqfeh
(1992). In this case, a velocity perturbation that leads to local radial extension
induces a perturbation radial normal stress τ̃rr . The rotation and deformation due
to the steady-state azimuthal shear flow then act on the local radial stress to induce
an azimuthal stress τ̃θθ. This local increase in hoop stress leads to an unstable
balance of forces in the radial momentum equation, as azimuthally stretched material
presses inward. This unstable balance leads to further velocity perturbations and the
propagation of the instability.

In both the CCAC and CCAP cases, axisymmetric flow is initially destabilized, then
stabilized as Wez increases. We discuss here the mechanisms underlying these effects,
considering axisymmetric perturbations of the CCAC flow of the upper-convected
Maxwell fluid. Non-axisymmetric modes are not discussed, since only for small Wez
are they most dangerous.

The stabilization mechanism when Wez � 1 is manifest in the change in dominant
balance outlined in the scaling analysis above. For axisymmetric disturbances, the
dominant stresses, with which τ̃θθ must compete, are τ̃rz and τ̃zz . The scalings for
these stresses arise from coupling of the base-state and disturbance quantities; all
the coupling terms remain in the leading-order constitutive equations, showing that
there is no single coupling that individually determines the sizes of these stresses.
Nevertheless, to provide a heuristic view of the stabilization mechanism, we single
out one of these terms, the contribution 2τ̄zz∂ṽz/∂z to τ̃zz . This term scales as We2

z

(in the absence of a boundary layer) and reflects the fact that an elastic material
under tension (e.g. a membrane, or in the present case an annular fluid element)
resists deformation. The flow resists the radial deformation and corresponding axial
gradients required for the elastic instability to grow. This explanation also describes
why a negative second normal stress coefficient is stabilizing in the absence of axial
flow: as long as τ̄zz > τ̄rr , radial deformation of fluid elements will be resisted.
Finally, we can also qualitatively explain the change in wavenumber at instability
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as Wez increases. The instability moves to longer wavelengths because for a given
amplitude of deformation, the force required to impose that deformation is smaller the
longer the wavelength. A similar stabilization mechanism for high-Reynolds-number,
high-Weissenberg-number free shear flows is discussed in Azaiez & Homsy (1994)
(particularly the appendix by Hinch) and Rallison & Hinch (1995). In these works,
the source of instability is completely different from that considered here, but the
mechanism of stabilization is similar.

For the high-Wez behaviour, the scaling analysis provides a priori results, showing
the change in the dominant balance that leads to stabilization. No change in dominant
balance occurs when Wez � 1; effects here are more subtle, and to study the
contributions of various terms, a scaling analysis is not useful. We will use an a
posteriori analysis similar in spirit, but not detail, to an energy analysis (Serrin 1959;
Feinberg & Schowalter 1969a, b; Joo & Shaqfeh 1992), to perform a term-by-term
comparison of the contributions to the linear stability equations (cf. Steen & Aidun
1988; Graham & Steen 1991).

Consider the rr-component of the linearized constitutive equation:

∂τ̃rr

∂t
= −v̄z τ̃rr + 2τ̄rz

∂ṽr

∂z
+ 2

∂ṽr

∂r
− 1

Wp
τ̃rr.

We define an inner product

(a, b) =
α

2π

∫ 1

0

∫ 2π/α

0

a(ρ, z)b̄(ρ, z)

N∑
k=0

δ(ρk) dρ dz,

and a norm ||u|| = (u, u)1/2, where ρk = (1 + cos kπ/N)/2 is the position of the kth
Chebyshev–Gauss–Lobatto collocation point. With this inner product, the integral
over ρ becomes the sum over the collocation points. Taking the inner product of the
rr-constitutive equation with τ̃rr gives

1

2

d

dt
||τ̃rr||2 =

(
τ̃rr, 2τ̄rz

∂ṽr

∂z

)
+

(
τ̃rr, 2

∂ṽr

∂r

)
−
(
τ̃rr,

1

Wp
τ̃rr

)
.

This is an evolution equation for the positive definite quantity ||τ̃rr||2; given the nu-
merical solution, all the terms in the equation can be evaluated. In particular, the signs
of the various contributions to the right-hand side of the equation determine whether
they are destabilizing (> 0) or stabilizing (< 0). The convective term (τ̃rrv̄z∂τrr/∂z)
vanishes identically because τ̃rr and its z-derivative are out of phase in z by π/2. Anal-
ogous equations can be constructed for the other stresses. Since the Reynolds number
is zero, the vorticity equation is not an evolution equation. Nevertheless, performing
the same operation will give information about which terms balance. For example, in
the θ-vorticity equation, with ω̃θ being the θ-component of the disturbance vorticity,
we have

0 =

(
ω̃θ,

∂2τ̃rr

∂r∂z

)
+

(
ω̃θ,

∂2τ̃rz

∂z2

)
−
(
ω̃θ,

∂2τ̃rz

∂r2

)
−
(
ω̃θ,

∂τ̃θθ

∂z

)
−
(
ω̃θ,

∂2τ̃zz

∂r∂z

)
.

The fourth term is the hoop stress contribution to the radial momentum balance.
Table 2 shows the terms on the right-hand sides of the equations at Wez = 0

and Wez = 0.01, when α = 6.7,Wp = 5.93, evaluated at t = 0. Evaluation of the
terms at a different time does not change their relative magnitudes. For the Wez = 0
case, the terms in each equation sum to zero, because the flow is marginally stable,
while at Wez = 0.01, the sums of terms in the constitutive equations are positive,
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since the flow is unstable. Consider first the Wez = 0 column. We see that τ̃θθ makes
the largest individual contribution to the θ-vorticity equation. In agreement with the
arguments of LSM, the driving force for the production of hoop stresses can be seen
from the table to be the interaction of base-state velocity gradients with disturbance
stresses: the term (τ̃θθ, 2∂v̄θ/∂rτ̃rθ) in the θθ-equation. The main source of the shear
stress perturbation is the couping of ∂v̄θ/∂r with τ̃rr , where τ̃rr arises from extensional
velocity perturbations. The initial destabilizing effect of axial flow can be seen from
column 2 of table 2. The hoop stress still dominates the θ-vorticity equation. In
each component of the constitutive equation, the terms due to the coupling of the
base-state axial stresses τ̄rz , τ̄θz , τ̄zz with velocity perturbations have a net destabilizing
effect. Paradoxically, these same terms contribute to the stress scalings that lead
to stabilization at high Wez . The resolution to the paradox lies in the change in
dominant balance in the momentum equation. As noted, very little changes here
between Wez = 0 and Wez = 0.01. However, at Wez = 2, and all other parameters
unchanged, the same calculation, for the least slowly decaying mode, shows that the
contribution of τ̃θθ is already negligible, an order of magnitude smaller than the
dominant terms. Thus, this a posteriori analysis corroborates the scaling arguments
once Wez is sufficiently large.

4. Conclusions
Scaling arguments and computations with the upper-convected Maxwell and

Oldroyd-B constitutive equations in the narrow gap limit predict that superimposed
axial Couette or Poiseuille flow can have a significant effect on the stability and
bifurcation behaviour of viscoelastic circular Couette flow. For superimposed Cou-
ette flow, scaling arguments predict that the critical azimuthal Weissenberg number
should increase as We1

z for axisymmetric modes, and We2
z for non-axisymmetric ones.

The stabilizing effect is associated with the axial stresses induced by the secondary
flows, which control the dominant balances in the momentum equation at large
Wez . Numerical results show that although axisymmetric modes are destabilized at
small Wez , through a coupling between velocity perturbations and base-state stresses,
these scalings hold when Wez is sufficiently large, and axisymmetric disturbances
are thus the most dangerous. Similar observations hold for superimposed Poiseuille
flow, although the degree of stabilization is smaller because the axial stresses are not
uniformly large. Weakly nonlinear analysis shows that the axisymmetric instability is
subcritical in the narrow gap limit when Wez = 0, but that axial Poiseuille flow can
make the bifurcation supercritical. When Wez is sufficiently large, the stress fluctua-
tions are localized, and can be thought of in terms of a boundary layer instability in
the Couette flow case, and an internal layer instability in the Poiseuille case.

From the mathematical point of view, the present results illustrate the unity of
the stability problems for a number of flows. The most unstable eigenvalue of
the axisymmetric problem when axial Couette flow is superimposed on circular
Couette flow reduces to one of the Gorodtsov–Leonov eigenvalues (corresponding to
a boundary-localized fluctuation) in the plane Couette limit. If axial Poiseuille flow is
superimposed, the most unstable eigenvalue reduces to an internally localized mode
in the discrete spectrum of plane Poiseuille flow.

An important practical implication of this work is that it points to a strategy for
improving the stability of viscoelastic flows, by imposing a relatively small secondary
flow in either an open loop or closed loop manner. In coating operations, for example,
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Term Wez = 0 Wez = 0.01(
τ̃rr , 2τ̄rz

∂ṽr

∂z

)
0 3.14× 10−4(

τ̃rr , 2
∂ṽr

∂r

)
3.28× 10−2 3.55× 10−2(

τ̃rr ,−Wp−1τ̃rr
)
−3.28× 10−2 −3.51× 10−2

(
τ̃rθ,

∂v̄θ

∂r
τ̃rr

)
0.866 0.930(

τ̃rθ, τ̄θz
∂ṽr

∂z

)
0 5.61× 10−3(

τ̃rθ, τ̄rz
∂ṽθ

∂z

)
0 −4.11× 10−3(

τ̃rθ,
∂ṽθ

∂r

)
−0.433 −0.461(

τ̃rθ, τ̄rθ
∂ṽr

∂r

)
0.289 0.321(

τ̃rθ,−Wp−1τ̃rθ
)
−0.722 −0.774(

τ̃rz ,
∂v̄z

∂r
τ̃rr

)
0 −2.32× 10−5(

τ̃rz , τ̄zz
∂ṽr

∂z

)
0 1.11× 10−6(

τ̃rz ,
∂ṽr

∂z

)
4.51× 10−3 5.56× 10−3(

τ̃rz ,
∂ṽz

∂r

)
1.55× 10−2 1.70× 10−2(

τ̃rz ,−Wp−1τ̃rz
)
−2.00× 10−2 −2.20× 10−2

(
τ̃θθ, 2

∂v̄θ

∂r
τ̃rθ

)
10.2 10.8(

τ̃θθ, 2τ̄θz
∂ṽθ

∂z

)
0 2.09× 10−3(

τ̃θθ, 2τ̄rθ
∂ṽθ

∂r

)
4.74× 10−5 −0.360(

τ̃θθ,−Wp−1τ̃θθ
)
−10.2 −10.3

Term Wez = 0 Wez = 0.01(
τ̃θz ,

∂v̄z

∂r
τ̃rθ

)
0 −7.92× 10−3(

τ̃θz ,
∂v̄θ

∂r
τ̃rz

)
0.816 0.873(

τ̃θz , τ̄zz
∂ṽθ

∂z

)
0 7.91× 10−5(

τ̃θz ,
∂ṽθ

∂z

)
0.375 0.396(

τ̃θz , τ̄rz
∂ṽθ

∂r

)
0 4.73× 10−3(

τ̃θz , τ̄θz
∂ṽz

∂z

)
0 6.53× 10−3(

τ̃θz , τ̄rθ
∂ṽz

∂r

)
0.794 0.889(

τ̃θz ,−Wp−1τ̃θz
)
−1.99 −2.11(

τ̃zz , 2
∂v̄z

∂r
τ̃rz

)
0 5.97× 10−5(

τ̃zz , 2
∂ṽz

∂z

)
3.28× 10−2 3.57× 10−2(

τ̃zz , 2τ̄zz
∂ṽz

∂z

)
0 7.13× 10−6(

τ̃zz , τ̄rz
∂ṽz

∂r

)
0 3.76× 10−4(

τ̃zz ,−Wp−1τ̃zz
)
−3.28× 10−2 −3.53× 10−2

(
ω̃r,

∂2τ̃rθ

∂r∂z

)
−16.8 −17.8(

ω̃r,
∂2τ̃θz

∂z2

)
16.8 17.8

(
ω̃θ,

∂2τ̃rr

∂r∂z

)
−2.36 −2.56(

ω̃θ,
∂2τ̃rz

∂z2

)
0.337 0.336(

ω̃θ,−
∂2τ̃rz

∂r2

)
0.650 0.825(

ω̃θ,−
∂τ̃θθ

∂z

)
3.74 3.97(

ω̃θ,−
∂2τ̃zz

∂r∂z

)
−2.36 −2.58

Table 2. Contributions of individual terms to the evolution of the most dangerous disturbance,
S = 0, ñ = 0, α = 6.7,Wp = 5.93, at Wez = 0 and Wez = 0.01. The horizontal lines separate the
terms in different equations.
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motion of a boundary or an imposed pressure gradient in the transverse direction
may lead to significant stability improvements.
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Appendix A. The structure of the spectrum of viscoelastic plane shear flow
This Appendix briefly reviews previous work and presents some original results

regarding the properties of the exact and (Chebyshev) discretized spectra of the linear
stability problems for inertialess plane Couette and Poiseuille flows of an upper-
convected Maxwell fluid. The appropriately non-dimensionalized governing equations
for these cases can be obtained from the equations of Appendix B by rescaling
all velocities (including the wave speed c) by Wez/Wp and letting Wp → 0. Only
axisymmetric (two-dimensional) perturbations need be considered in this limit, as a
version of Squire’s theorem guarantees that these are the most dangerous disturbances
(Tlapa & Bernstein 1970).

Gorodtsov & Leonov (1967) analytically determined the spectrum for plane Couette
(PC) flow of the UCM fluid, reducing the problem to a fourth-order ODE for the
stream function (which is proportional to v̂r). For the case where the inner cylinder
(corresponding to the lower wall in the usual plane flow geometry) is moving, this
equation is[

Q(ρ, c)2D2 − α2Q(ρ, c)2 + 2 + 2Q(ρ, c)D
] [

D2 − 2iαWezD− α2(1 + 2We2
z)
]
v̂r = 0,

(A 1)

where D = d/dρ and Q(ρ, c) = −c+ (1− ρ)− i/(αWez). The spectrum consists of two
discrete eigenvalues, the so-called Gorodtsov–Leonov eigenvalues, and a continuous
spectrum, which lies in the negative (stable) half-plane and corresponds to the values
of c where Q = 0: i.e. the strip {c = (1 − ρ0) − i/(αWez) ∀ρ0 ∈ [0, 1]}. At these
values of c, the equation exhibits a regular singular point at the position ρ = ρ0. The
eigenfunctions corresponding to these values of c will be constructed below. Figure
16 shows an example of the numerically determined spectrum, computed with the
method used in the main text (with and without boundary regularization). There is
a clear difference in the resolution of the discrete and continuous components of the
spectrum. The discrete eigenvalues are approximated to very high accuracy, while the
continuous spectrum is not approximated nearly as well.

The origin of the poor numerical approximation of the continuous spectrum lies in
the structure of the exact eigenfunctions. Gorodtsov & Leonov explicitly constructed
only the eigenfunctions corresponding to the discrete eigenvalues. These eigenvectors
are C∞ and are thus easily computed with a Chebyshev spectral discretization. For
values of c in the continuous spectrum, the solution behaviour at the singular point
is the key to understanding the numerical results. From above, c = 1− ρ0− i/(αWez).
Let % = ρ− ρ0, so Q = −%. Now (A 1) becomes[

%2D2 − α2%2 + 2− 2%D
] [

D2 − 2iαWezD− α2(1 + 2We2
z)
]
v̂r = 0. (A 2)

We now take v̂r to be a function of %. The stresses can be written in terms of v̂r(%):
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Figure 16. Numerical spectrum of plane Couette flow, Wez = 1, α = 10, N = 128, with and without
boundary regularization. The spurious eigenvalues obtained when boundary regularization is not
used are marked s. This spectrum was obtained with the code used in the main text, with Wp set to
1× 10−8 and the spectrum rescaled by Wez/Wp. The approximate continuous spectrum is the ring
of eigenvalues indicated. The eigenvalues lying exactly on ci = −0.10 are degenerate, arising from
the fact that τ̂rθ, τ̂θθ and τ̂θz remain in the formulation, but are identically zero in the PC and PP
limits.

to leading order near % = 0,

τ̂rr(%) ∼
2

α

αWez v̂r(0) + iv̂′r(0)

%
, (A 3a)

τ̂rz(%) ∼
2

α2

−iαWez v̂r(0) + v̂′r(0)

%2
, (A 3b)

τ̂zz(%) ∼
2

α3

−2αWez v̂r(0)− 2iv̂′r(0)

%3
. (A 3c)

Clearly, unless v̂r(0) and v̂′r(0) vanish, the stresses will be very singular.
Previous approximate analyses of this problem have been performed by Keiller

(1992) and Sureshkumar & Beris (1995b), but neither of these elucidated the exact local
structure of the solution. Keiller performed a partial analysis based on the Frobenius
method. The indicial exponents are 0, 1, 3 and 4, but Keiller neglected the exponents
0 and 1, thereby losing the leading-order behaviour of the stresses. Furthermore,
no attempt was made to resolve the structure at the singular point. Sureshkumar &
Beris (1995b) performed a somewhat heuristic analysis of the spectrum, hypothesizing
that the stress fields contain delta-function singularities. As they note, their proposed
stresses do not satisfy the momentum balance, and in fact the exact analysis presented
below shows that no delta functions are present in the solution.

We begin the solution of (A 2) by writing it as

L1L2v̂r = 0,



366 M. D. Graham

which can be rewritten

L1w = 0, (A 4)

L2v̂r = w. (A 5)

The substitution w = %f(%) leads to the general solution for w:

w(%) = k3% cosh (α%) + k4% sinh (α%) , (A 6)

where k3 and k4 are arbitrary constants. The general solution to L2v̂r = w is found to
be

v̂r(%) = k1 exp
(
−α %

[
−i Wez +

(
1 + We2

z

)1/2
])

+ k2 exp
(
α %
[
i Wez +

(
1 + We2

z

)1/2
])

+ k3

− (−i + αWez %) (Wez cosh(α %)− i sinh(α %))

2 α3 Wez
2
(
1 + Wez

2
)

+ k4

− (−i + αWez %) (−i cosh(α %) + Wez sinh(α %))

2 α3 Wez
2
(
1 + Wez

2
) , (A 7)

where k1 and k2 are new arbitrary constants.
At the singular point, the solution need not be analytic. In particular, note that

the third-derivative term in (A2) is multiplied by % and the fourth by %2. Now, if v̂r
is a C1 function, then v̂′′′r ∼ δ(%) and v̂′′′′r ∼ δ′(%), and the third- and fourth-derivative
terms look like %δ(%) and %2δ′(%), which both vanish (Greenberg 1978). Therefore, the
arbitrary ‘constants’ k1–k4 can take on different values on the two sides of the singular
point, as long as the solutions and first derivatives on the two sides match at % = 0
(and the boundary conditions are satisfied). The resulting solution will satisfy the
equation in the whole domain, including the singular point. In addition, the solution
will actually be C2 even if only v̂r(0) and v̂′r(0) are imposed, because, since the third- and
fourth-derivative terms vanish at % = 0, the resulting second-order equation uniquely
determines v̂′′r (0), given v̂r(0) and v̂′r(0). For comparison, the continuous spectrum
of the stability problem for inviscid plane shear flow corresponds to C0 functions
(Case 1960). Both v̂r(0) and v̂′r(0) can be chosen arbitrarily, so each eigenvalue in the
continuous spectrum is degenerate, having two linearly independent eigenfunctions.
Finally, since both v̂r and v̂′r cannot vanish at % = 0 (otherwise the trivial solution is
obtained), (A 3) show that each of the exact stresses has a non-integrable singularity:
τ̂rr ∝ %−1, τ̂rz ∝ %−2, τ̂zz ∝ %−3.

Figure 17 shows the two eigenfunctions (plotted against the original gap coordinate
ρ) for α = 1,Wez = 10, ρ0 = 0.8, constructed by setting v̂r(0) = 1, v̂′r(0) = 0 for the first
eigenfunction and v̂r(0) = 0, v̂′r(0) = 1 for the second. Table 3 gives the values of the
coefficients in (A 7), where kil and kir denote the values of ki when % 6 0 and % > 0,
respectively.

Given the nature of the exact solution for these eigenfunctions, the numerical
observations can be put into perspective. The pairing of modes on figure 16, one
below each point on the exact spectrum and one above, arises from the twofold
multiplicity of the exact eigenvalues. The slow convergence as N increases reflects
the C2 continuity; the error in Chebyshev approximation of a C2 function is only
o(N−2) (Gottlieb & Orszag 1977). Nevertheless, the numerically observed velocities
are smooth, reflecting the absence of any blowup in the exact velocities. The exact
stresses, in contrast, are non-integrable, so no conventional numerical approach can
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Figure 17. Eigenfunctions for the modes in the continuous spectrum, α = 1, Wez = 10, ρ0 = 0.8:
(a) mode 1, satisfying v̂r(ρ = 0.8) = 1, v̂′r(ρ = 0.8) = 0; (b) mode 2, satisfying v̂r(ρ = 0.8) = 0,
v̂′r(ρ = 0.8) = 1.

be expected to yield accurate approximations. The Chebyshev approximations to the
stress fields are jagged, varying sharply at the grid scale near the singular point
(cf. Sureshkumar & Beris 1995b). Furthermore, we have observed that the numerical
modes exhibit the relation ||τ̂zz|| � ||τ̂rz|| � ||τ̂rr||, consistent with the exact singularity
strengths.

For inertialess plane Poiseuille (PP) flow of the UCM fluid, no complete analytical
description of the discrete spectrum exists, and the numerical analysis also remains
incomplete, although no evidence has been found for instability. The first reliable
computation of eigenvalues for this flow was performed by Ho & Denn (1977).
Like the problem for Couette flow, the equation can be reduced to a fourth-order
problem in the stream function; Ho & Denn used a shooting method to solve this
form of the problem. They found four discrete eigenvalues, but did not describe the
structure of the corresponding eigenfunctions. They also found a number of spurious
eigenvalues. Sureshkumar & Beris (1995b), using a Chebyshev collocation method
and a primitive variable formulation, computed the entire spectrum of the discretized
problem. As in the Couette problem, there is a continuous spectrum, defined by
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Coefficient Mode 1 Mode 2

k1l −1.637 43× 10−4 + i3.634 02× 10−4 −9.885 88× 10−6 − i2.630 92× 10−5

k2l −0.173 397− i1.1899 0.117 868 + i1.116 38× 10−3

k3l 2727.27− i1954.72 −39.1109 + i233.419
k4l 4158.72− i3244.05 −46.5394 + i369.09
k1r −1.078 67 + i3.881 92 −0.283 257 + i0.106 14
k2r −0.706 126 + i0.148 871 −0.045 218 9− i0.021 350 3
k3r −8810.39− i66.2721 −448.03− i400.7
k4r 55 590.3 + i6681.97 2628.22 + i2767.55

Table 3. Values of the coefficients of (A 7) for the modes in the continuous spectrum at
α = 1,Wez = 10, ρ0 = 0.8. Mode 1 satisfies v̂r(ρ = 0.8) = 1, v̂′r(ρ = 0.8) = 0; mode 2 satisfies
v̂r(ρ = 0.8) = 0, v̂′r(ρ = 0.8) = 1.
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Figure 18. Spectrum of PP flow, Wez = 1, α = 10, N = 128. This spectrum was obtained with the
code used in the main text, with Wp set to 1× 10−8 and the spectrum rescaled by Wez/Wp.

the strip {(1 − ρ0)ρ0 − i/(αWez) ∀ρ0 ∈ [0, 1]}, and as for numerical solution of the
Couette case, Sureshkumar & Beris (1995b) found this strip to be approximated
by a rough oval of eigenvalues. This is to be expected, as the C2 continuity of v̂r ,
and the resulting singular stresses, carry over exactly to this case, except for the
eigenvalue corresponding to a singularity at the midline (because there the velocity
is locally quadratic rather than linear). They interpret their results as indicating that
the spectrum of the numerical problem has six modes that are not approximations of
elements of the continuous spectrum, and that four of these are spurious. Nevertheless,
all six of these eigenvalues are insensitive to grid refinement. The results we present
below support the view that Poiseuille flow has a family of at least four discrete
eigenvalues, two of which are absent from the Couette problem.

We begin the present analysis of Poiseuille flow by presenting the numerically
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Figure 19. Snapshots of the disturbances (eigenfunctions) corresponding to eigenvalues (a)–(d) of
the spectrum of PP flow, Wez = 1, α = 10, N = 128 (figure 18). The disturbances are travelling
waves that decay in time.

determined spectrum at α = 10,Wez = 1, N = 128, figure 18. There are four obvious
discrete eigenvalues, labelled (a)–(d), and an approximate continuous spectrum. There
may be other discrete eigenvalues that cannot be resolved due to their proximity
to the continuous spectrum. The four discrete eigenvalues are insensitive to further
mesh refinement; there is no a priori reason to assume that they are not accurate
approximations to the true continuous problem. The τ̃zz-components of the travelling
wave disturbances corresponding to these discrete modes are shown in figure 19.
Eigenvalues (a) and (b) are nearly identical to one another, and also nearly iden-
tical to the Gorodsov–Leonov eigenvalue for PC flow corresponding to the same
wavenumber and Weissenberg number. Furthermore, the eigenvectors of modes (a)
and (b) are strongly localized near the channel boundaries; one is even, the other
odd across the channel midplane. We can understand these observations by noting
that, near the channel boundaries, the flow looks locally like Couette flow, so that
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at high wavenumbers, eigenvalues should exist that have a structure like that of
the Gorodtsov–Leonov eigenvalues. It is straightforward to show that by considering
large-wavenumber disturbances (cf. Black & Graham 1996), a Gorodtsov–Leonov
problem is recovered at leading order for fluctuations localized near each wall. As
α→∞, the strong localization implies that fluctuations near either wall should be de-
coupled from fluctuations at the other wall. The presence of a pair of nearly identical
eigenvalues, having even and odd eigenvectors, allows this decoupling to be realized;
any relative phase of the disturbances near the two boundaries can occur.

No corresponding asymptotic analysis has yet been performed to prove that eigen-
values (c) and (d) belong to the true spectrum of Poiseuille flow. Nevertheless, in
addition to their insensitivity to grid resolution (for large N), another fact supports
the contention that they are true eigenvalues. In the main text it is shown that one
of the eigenvalues leading to the instability of CC flow, which is surely not spurious,
evolves smoothly into mode (c) as parameters change. The relation of mode (d) to
the spectrum of CC flow has not been determined, but its spatial structure is smooth
and similar to that of mode (c), so no grounds exist for supposing that it is not a true
eigenvalue of the PP spectrum. This pair of eigenvalues evidently comprises a family
of modes that is distinct from the shear-dominated Gorodtsov–Leonov modes. The
Gorodtsov–Leonov modes are essentially boundary layer modes at large wavenumber;
in contrast, the other pair of modes can be thought of as internal layer perturbations.
The results of the main text show that both families of modes can lead to instabilities
in shear flows that are more complicated than the CC, PP and PC limits.

Appendix B. The governing equations in the narrow gap limit
This Appendix contains the formulas for the steady-state velocities and stresses

in CCAC and CCAP flows, and the linear operator L of the generalized eigenvalue
problem that determines their linear stability, to leading order in ε and under the
assumptions and scalings described in the main text. When Wez = 0, ñ = 0, this
formulation reduces to that of LSM.

B.1. Base states

To leading order, the steady-state velocities and polymer stresses for CCAC flow of
an Oldroyd-B fluid are

v̄r = 0, v̄θ = (1− ρ), v̄z =
Wez (1− ρ) ε1/2

Wp
, (B 1)

τ̄rr = 0, τ̄rθ = − Wp

(S + 1) ε1/2
, τ̄rz = − Wez

S + 1
, (B 2)

τ̄θθ =
2 Wp2

(S + 1) ε
, τ̄θz =

2 Wez Wp

(S + 1) ε1/2
, τ̄zz =

2 We2
z

S + 1
. (B 3)

For CCAP flow, the steady state is

v̄r = 0, v̄θ = (1− ρ), v̄z =
Wez (1− ρ) ρ ε1/2

Wp
, (B 4)

τ̄rr = 0, τ̄rθ = −Wp

ε1/2
, τ̄rz = Wez (1− 2 ρ) / (S + 1) , (B 5)

τ̄θθ =
2 Wp2

(S + 1) ε
, τ̄θz = −Wez Wp (2− 4 ρ)

(S + 1) ε1/2
, τ̄zz =

Wez
2 (2− 4 ρ)2

2 (S + 1)
. (B 6)
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B.2. Linear stability problem

Here are listed the non-zero elements of the operator Lα,ñ for the linear stability
problem, (2.6) for the CCAC and CCAP flows. The first six rows of Lα,ñ correspond to
the constitutive equation, the seventh and eighth to the r- and θ-vorticity equations
and the ninth to the continuity equation. Setting ñ to zero gives the operator Lα used
in the weakly nonlinear analysis.

B.2.1. CCAC flow

L11 = −iα
Wez
Wp

(1− ρ)− iñ(1− ρ)− 1

Wp
, L17 = (2D− 2iαWez − 2ñWp)/(S + 1),

L21 = −1, L22 = L11, L27 = Wp(2iαWez + 2iñWp−D)/(S + 1),

L28 = (−iαWez − iñWp + D)/(S + 1),

L31 = −Wez
Wp

, L33 = L11, L37 =
(
iα
(
1 + 2We2

z

)
+ 2ñWezWp−WezD

)
/(S + 1),

L39 = (−iαWez − iñWp + D) /(S + 1),

L42 = −2, L44 = L11, L48 = Wp (4iαWez + 4iñWp− 2D) /(S + 1),

L52 = −Wez
Wp

, L53 = −1, L55 = L11,

L58 =
(
iα
(
1 + 2We2

z

)
+ 2iñWezWp−WezD

)
/(S + 1),

L59 =
(
2iαWezWp + 2iñWp2 −WpD

)
/(S + 1),

L63 = −2
Wez
Wp

, L66 = L11, L69 =
(
2iα
(
1 + 2We2

z

)
+ 4iñWezWp− 2WezD

)
/(S + 1),

L72 = D, L74 = iñ, L75 = iα, L78 = SWp
(
−α2 + D2

)
/(S + 1),

L81 = iαD, L82 = −ñα, L83 = −α2 −D2, L84 = −iα, L85 = −iñD,

L86 = −iαD, L87 = iαSWp
(
−α2 + D2

)
/(S + 1), L89 = SWp

(
α2D−D3

)
/(S + 1),

L97 = D, L98 = iñ, L99 = iα.

B.2.2. CCAP flow

L11 = −iα
Wez
Wp

(1− ρ)ρ− iñ(1− ρ)− 1

Wp
,

L17 = (2D− 2iαWez(2ρ− 1)− 2ñWp)/(S + 1),

L21 = −1, L22 = L11, L27 = Wp(2iαWez(2ρ− 1) + 2iñWp− D)/(S + 1),

L28 = (−iαWez(2ρ− 1)− iñWp + D)/(S + 1),

L31 = −Wez(2ρ− 1)

Wp
, L33 = L11,

L37 =
(
iα
(
1 + 2We2

z(2ρ− 1)2
)

+ 2Wez + 2ñWez(2ρ− 1)Wp−Wez(2ρ− 1)D
)
/(S + 1),

L39 = (−iαWez(2ρ− 1)− iñWp + D) /(S + 1),
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L42 = −2, L44 = L11, L48 = Wp (4iαWez(2ρ− 1) + 4iñWp− 2D) /(S + 1),

L52 = −Wez(2ρ− 1)

Wp
, L53 = −1, L55 = L11, L57 = −4WezWp/(S + 1),

L58 =
(
iα
(
1 + 2We2

z(2ρ− 1)2
)

+ 2iñWez(2ρ− 1)Wp−Wez(2ρ− 1)D
)
/(S + 1),

L59 =
(
2iαWez(2ρ− 1)Wp + 2iñWp2 −WpD

)
/(S + 1),

L63 = −2
Wez(2ρ− 1)

Wp
, L66 = L11, L67 = 8We2

z(2ρ− 1)/(S + 1),

L69 =
(
2iα
(
1 + 2We2

z(2ρ− 1)2
)

+ 4iñWez(2ρ− 1)Wp− 2Wez(2ρ− 1)D
)
/(S + 1).

The vorticity and continuity equations are unchanged from the CCAC case.
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